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Pressure drop due to viscous flow through cylinders 
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A general formula is developed which permits a calculation of the pressure drop 
arising from the slow steady flow of a viscous fluid through a circular cylinder for 
arbitrarily assigned conditions of velocity on the bounding surfaces of the cylinder. 
In  particular, the diminution in pressure can be calculated directly from the 
prescribed boundary velocities without requiring a detailed solution of the 
equations of motion. Hence it is possible to compute, in comparatively simple 
fashion, the magnitude of this m&croscopic parameter for a large variety of 
complex motions which would normally present great analytical difficulties. 

By way of illustration the additional pressure drop arising from the presence of 
a point force situated along the axis of a cylinder is calculated. The additional 
force required to maintain the motion in the presence of the obstacle is exactly 
twice the magnitude of the point force itself. 

One of the objectives of theoretical hydrodynamics is the calculation of various 
macroscopic parameters such as drag, lift, moment, pressure drop and the like 
from a knowledge of the stress field. In  many instances one is less interested in the 
actual details of the fluid motion than in the numerical value of the parameters 
characterizing the flow. The adoption of this point of view is often imposed 
through purely mathematical difficulties occasioned by the complex structure of 
the fields. Accordingly, formulae which permit calculation of the macroscopic 
properties of the fluid motion directly from the boundary and initial conditions, 
without recourse to a detailed solution of the equations of motion, have much to 
commend them. 

As a specific contribution in this general area we propose to develop an expres- 
sion for the pressure drop associated with slow, steady viscous flows inside circular 
cylinders in terms of arbitrarily prescribed conditions of velocity over the 
bounding surfaces of the cylinder. This formula, coupled with a perturbation 
scheme known as the method of ‘reflexions’ (see, for instance, Brenner & Happel 
1958), provides a useful tool for the study of the additional pressure drop 
caused by disturbances to a Poiseuille field of flow. These results, in turn, 
f h d  application in the flow through dilute beds of particles such as in 
fluidized beds, pneumatic conveying, and similar processes (Happel & Brenner 
1957). 

Consider il time-independent viscous motion occurring within a circular 
cylinder of radius po and length 2h. It is presumed that the velocity and pressure 
fields ( v , p )  are well behaved at all points within the cylinder and that they there 
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satisfy the creeping motion equation (in the absence of external forces) 

1 

/I 
VZV = -vp 

and the continuity equation v . v  = 0 (2) 

for incompressible fluids. In  cylindrical co-ordinates (p,  $, z )  the component 
velocities will be denoted by (v , v , v ). 

The pressure drop in the positive z-direction, AP, is defined as the difference 
in pressure between the two planes, z = - h and z = h, respectively, situated at 
either end of the cylinder; that is, 

9 . 9  

AP = b]pj=-h-C2)]z=h* (3) 

These planes are to be selected in such a way that the pressure across each is 
constant. Otherwise, our definition of pressure drop is ambiguous. In  a majority 
of circumstances this requires that these planes be situated at  z = foo. 

I n  the absence of inertial and external forces the surface forces acting upon any 
fluid volume constitute a system of forces in equilibrium. Upon applying this 
argument to a cylinder of fluid of radius p bounded by the planes z = f h, and 
considering only the z-component of this force, we are led to the relation 

in which P, and Pfz are the components of stress in the z-direction acting on the 
surfaces z = constant and p = constant, respectively. 

For an incompressible viscous fluid these stresses can be written in the form 

(? 2) a v Z  ez = -p+ 2p-, aZ Ppz = p - +- 
However, according to the equation of continuity, 

from which we eventually obtain 

With the aid of these results and a simple partial integration, equation (4) can be 
put in the form 

If this relation is multiplied by p dp and the resulting expression integrated from 
p = 0 to po it takes the form 
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Lastly, we can rid ourselves of the second integral in the above expression by 
setting p = po in equation (5); multiplying both sides by dz and integrating the 
result from z = - h to z = z. Upon doing this we finally obtain the desired formula, 

This relation enables us to compute the pressure drop directly from the prescribed 
values of v, on the walls and bottom of the container, vz(po, 4, z )  and v,(p, g5, - h),  
respectively, and from the prescribed radial component on the cylinder walls, top 
and bottom, vp(po, 4, z) ,  v,(p, 4, h) and v,(p, 4, -h) ,  respectively. In those 
applications where it is necessary to choose the constant pressure planes a t  
z = 00 the velocity at infinity is zero and the second, fourth and fifth integrals 
in the foregoing expression vanish. 

As a trivial illustration of the use of this formula we shall deduce Poiseuille's 
law for the diminution in pressure accompanying the laminar flow of a viscous 
fluid in a circular pipe. In  this application we are, of course, making use of the 
fact that in the rectilinear flow of an incompressible fluid the creeping motion 
and Stokes-Navier equations are identical. The boundary conditions to be 
satisfied are: 

(i) on the cylinder walls, p = po, 
(ii) at  the top of the cylinder, z = h, 
(iii) at  the bottom of the cylinder, z = -h, 

vz(po, q5, z )  = vp(po, 4, z )  = 0; 

v,(p, 4, h) = 0; 

v,(p, 4, - h )  = 0; 

and 

where Q is the volumetric flow rate through the cylinder and is independent of z. 
If L = 2h is the length of pipe through which the fluid passes, we have from (6) 

APT& -- 8PQL 
4P TPt  ' 

- 4(iL)&, or AP = - (7) 

which is Poiseuille's law. 
As a somewhat more instructive example, we consider the problem of an 

external force localized at a point ( p  = 0, z = 0), situated at  the longitudinal axis 
of the cylinder. This force, whose magnitude is F,  acts in the direction of the 
negative z axis. The pressure drop associated with this disturbance can be 
calculated from (6). 

In  the absence of the cylinder walls, when the fluid extends to infinity in all 
directions, the unperturbed motion, (vCO),p(O)), given by Lamb (1932) can be 

and 
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As a result of the presence of a boundary encircling the fluid, the original field of 
flow is perturbed by an amount ( $ I ) ,  ~ ( 1 ) )  and the entire motion ( v , p )  is 

v = VCO) +$I), (10) 

p = p(0) + p'". ( 1 1 )  

The validity of this method of treatment depends upon the linearity of the 
equations of motion. 

On the hypothesis of no slip at the cylinder walls we have the boundary 
condition 

(12 )  v = 0 at p = P o ,  

which is equivalent to VC1) = - $0) a t  p = po. (13) 

There are no further restrictions imposed on the field $1) except that it be free 
from singularities in the interior of the cylinder. As such, it cannot alter the force 
acting at the isolated point, r = 0, and the force is thus passed along unaltered to 
become a property of the field v. 

The planes across which the pressure, p ,  is constant occur at z = & 00. On the 
basis of ( 1  l ) ,  the pressure drop due to the entire motion can be calculated from the 
relation 

But, equation (9) shows that the pressure drop due to the unperturbed motion is 

(14) A€' = .AP(") + AP(l). 

AP(O) = [P'O)], =-m - [$O)] ,  =m = 0,  (15) 

and hence AP = AF'). (16) 

Now hpcl) can be computed from (6) by putting h = co. Since Vco) + 0 as z + & co 
and since VCo) and $1) are related by (13 )  then v:? and v!) vanish at the top and 
bottom of the cylinder, whence 

(17) 

In  view of equations (13) and (14) and the lack of dependence of the velocity field 
on the angle #, the above equation becomes 

and 
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Inserting these values in (18) it becomes 

from which we find AP = 2F/np;. The pressure drop force, APnp;, is thus 
exactly twice the external force which gives rise to it. 

If the external force arises from the action of a viscous fluid impinging on a 
small spherical particle situated at the cylinder axis, then F is equal to and 
oppositely directed from the drag, D, experienced by the particle while AP is the 
additional* pressure drop caused by its presence. Without further calculation, 
FaxBn's (1927) law shows that for a small particle 

D =  - F =  -6npa(U0-U), (20) 

where &Uo is the superficial velocity of the fluid, U is the velocity of the particle in 
the z-direction and a is the particle radius. Under these circumstances 

For small values of alp,, this result agrees identically with that of Happel & 
Byrne (1954) obtained by a much more complex procedure requiring a detailed 
calculation of the field VCQ. 
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* The fluid experiences a pressure drop even in the absence of the obstacle. The difference 
between the total pressure drop in the presence of the particle and the Poiseuillhn pressure 
drop in the absence of the particle is the additional pressure drop. It is an experhentally 
memurable quantity. 




